
20.211
Introduction to Design Computation
Fall 2019

Instructor

Jason Lim

Teaching Assistants

Tan Ying Yi
Kateryna Konieva

Learning Objectives
••	 Understand computational

design approaches in the field of
architecture

•	 Formulate design problems
so that they can be solved via
computational methods

•	 Acquire technical skills in geometric
modeling, basic scripting and visual
programming

•	 Explore and develop design
solutions using computational
means

Measurable Outcomes
•	 Demonstrate a broad base

of knowledge about design
computation

•	 Gain and demonstrate knowledge
in geometric modelling, scripting
and visual programming

•	 Apply computational methods to
generate, describe, and evaluate
designs

Course Description
This course is an introduction to concepts and methods, as

well as practical techniques in architectural design computa-
tion. It is comprised of three learning segments: (a) foundations
in computational geometry; (b) principles of algorithmic design;
and (c) associative/parametric design. Students will gain experi-
ence in geometric modelling, visual programming, and reading
and writing simple generative computer programs through a se-
ries of active learning sessions and design exercises.

In this course, students will learn to create, analyze and evalu-
ate computational and geometric constructs in a design context.
The course provides students with a basis for developing a criti-
cal approach towards using computational tools over the course
of their architectural education and beyond. The success of stu-
dents is evaluated not solely on technical accomplishments, but
according to the integrity of the produced design processes and
products in engaging the given theoretical concepts.

Students are introduced to a hybrid approach to programming, involving the use of a textual programming language—
Python—within a visual programming environment—Grasshopper. Through weekly exercises, students learn procedural
and object oriented styles of programming in Python, as well as the visual dataflow paradigm in Grasshopper.

Term 4

from Rhino.Geometry import NurbsSurface

bIsRational = False
u_degree = v_degree = 3
u_cv_count = v_cv_count = 4
u_knot = v_knot = [0.0, 0.0, 0.0, 1.0, 1.0, 1.0]

Creates internal uninitialized arrays for control
points and knots
nurbs_surface = NurbsSurface.Create(3, bIsRational, u_
degree + 1, v_degree + 1,u_cv_count, v_cv_count)

The course also introduces computational geometry concepts. It covers topic such as: points, lines, vectors, curves,
surfaces and transformations. Students learn the mathematical basis of such concepts, as well as how to create and
manipulate geometric types via programming.

Assignment 1: A Single Thread by Chong Shi Qing, Han Xianhe, Melvin Wong and Renee Tan

Assignment 1: A Single Thread by Ching Yuan Wen, Muhammad Syafiq Bin Norkhalim, See Tow Jo Wee and Thon Way Way

Assignment 2: The Pop-up structure (left) by Chong Yuan Wen, Keith Lim, Lynus Lim and Yoo Fei Yi. Students use a particle
spring system for form-finding; they generate variations of a tensile struction based on different initial support conditions.

Assignment 2: The Pop-up structure (above) by Alastair Chew, Han Xianhe, Koh Fang Yun and Nurul Nazeera Binte Yazid. Students
extract fabrication related information directly from the computational model in order to build a 1:10 steel wire model.

