20.211
Introduction to Design Computation
Fall 2019

Instructor

Jason Lim

Course Description

This course is an introduction to concepts and methods, as
Tan Ying i well as practical techniques in architectural design computa-
Kateryna Konieva tion. It is comprised of three learning segments: (a) foundations
in computational geometry; (b) principles of algorithmic design;
and (c) associative/parametric design. Students will gain experi-
ence in geometric modelling, visual programming, and reading
and writing simple generative computer programs through a se-
ries of active learning sessions and design exercises.

In this course, students will learn to create, analyze and evalu-
ate computational and geometric constructs in a design context.
The course provides students with a basis for developing a criti-
cal approach towards using computational tools over the course
of their architectural education and beyond. The success of stu-
dents is evaluated not solely on technical accomplishments, but
according to the integrity of the produced design processes and
products in engaging the given theoretical concepts.

Teaching Assistants

Learning Objectives

Understand computational

design approaches in the field of

architecture

« Formulate design problems
so that they can be solved via
computational methods

« Acquire technical skills in geometric
modeling, basic scripting and visual
programming

« Explore and develop design
solutions using computational
means

Measurable Outcomes

- Demonstrate a broad base
of knowledge about design
computation

« Gain and demonstrate knowledge
in geometric modelling, scripting
and visual programming

« Apply computational methods to
generate, describe, and evaluate
designs

Term 4

Students are introduced to a hybrid approach to programming, involving the use of a textual programming language—
Python—within a visual programming environment—Grasshopper. Through weekly exercises, students learn procedural
and object oriented styles of programming in Python, as well as the visual dataflow paradigm in Grasshopper.

from Rhino.Geometry import NurbsSurface

bIsRational = False

Creste Surface | u_degree = v_degree = 3

u_cv_count = v_cv_count = 4

u_knot = v_knot = [0.0, 0.0, 0.0, 1.0, 1.0, 1.90]

Creates internal uninitialized arrays for control
points and knots

nurbs_surface = NurbsSurface.Create(3, bIsRational, u_
JTS, .25, 0 degree + 1, v_degree + 1,u_cv_count, v_cv_count)

The course also introduces computational geometry concepts. It covers topic such as: points, lines, vectors, curves,
surfaces and transformations. Students learn the mathematical basis of such concepts, as well as how to create and
manipulate geometric types via programming.

RESULT 1A RESULT 1B RESULT 1C RESULT 1D

pl start index = 15 p1 start index = 30 pl start index = 90 pl start index = 120

RESULT 2A RESULT 2B RESULT 2C RESULT 2D

pl start index =3 pl startindex = 6 pl startindex =9 pl start index = 12
pl start index = 18 pl startindex = 21 pl start index = 24 pl start index =27

\\ WA

Assignment 1: A Single Thread by Chong Shi Qing, Han Xianhe, Melvin Wong and Renee Tan

Plan

derspective

Elevation

()
=
=1

o

9

Q

@

&2

[
a

NS

Assignment 1: A Single Thread by Ching Yuan Wen, Muhammad Syafig Bin Norkhalim, See Tow Jo Wee and Thon Way Way

INITIAL ITERATIONS

RESULT 1D

RESULT 1C

RESULT 1B

RESULT 1A

PERSPECTIVE

PLAN

Vll
AL/
NG
A

"'(44 2\
SN
PSS
KOSK KK
PLK KRN
‘00000000 e

95020:%
DORALS
W"““’W-W\W&Vp’/
oz

Assignment 2: The Pop-up structure (left) by Chong Yuan Wen, Keith Lim, Lynus Lim and Yoo Fei Yi. Students use a particle
spring system for form-finding; they generate variations of a tensile struction based on different initial support conditions.

Assignment 2: The Pop-up structure (above) by Alastair Chew, Han Xianhe, Koh Fang Yun and Nurul Nazeera Binte Yazid. Students

extract fabrication related information directly from the computational model in order to build a 1:10 steel wire model.

