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ABSTRACT
This paper details the dimensional synthesis for the rigid

body guidance of planar eight-bar linkages that could be driven
by a prismatic joint at its base. We show how two RR cranks
can be added to a planar parallel robot formed by a PRR and
3R serial chain to guide its end-effector through a set of five task
poses. This procedure is useful for designers who require the
choice of ground pivot locations. The results are eight different
types of one-degree of freedom planar eight-bar linkages. We
demonstrate the design process with the design of a multifunc-
tional wheelchair that could transform its structure between a
self-propelled wheelchair and a walking guide.

INTRODUCTION
This paper focuses on the dimensional synthesis for the rigid

body guidance of planar eight-bar linkages with 8 links and 10
joints, of which one of the joint is a sliding joint located at the
base. Design situations frequently arise where actuating a mech-
anism with a prismatic joint offers significant advantage, partic-
ularly if it involves large driving forces and repeatable positional
accuracy, see Myszka and Murray (2010) [1]. Alternatively, it
would be useful in circumstances where huge output forces are
required, for instance to deliver a linear projectile to ”render-
safe” ordnance, see Gazonas etal. (1996) [2].

Dimensional synthesis determines the dimensions or pro-
portions of the links of a linkage, and in rigid body guidance

we require the linkage to guide an entire body through a pre-
scribed motion sequence. A planar linkage is made up of revo-
lute (R) and prismatic (P) joints and has the property that all of
its links move in parallel planes. An example of a well known
planar eight-bar linkage is the Peaucellier linkage, invented by
the French Captain Charles Nicolas Peaucellier, which is able to
follow a straight line exactly, see Koetsier (1994) [3].

The synthesis of an eight-bar linkage to reach a specified
set of task positions was first presented by Subbian and Flu-
grad (1994) [5]. They formulated design equations for a con-
nected set of RR and RRR chains such that the resulting system
could reach as many as seven task positions. This work used the
triad synthesis equations studied by Lin and Erdman (1987) [6]
and Chase et al.(1987) [7]. Farhang and Basu (1994) [8] de-
veloped approximate kinematic equations for the analysis and
design of three input, eight-bar mechanisms driven by relatively
small cranks. Mariappan and Krishnamurty (1996) [9] used exact
gradient method for the synthesis of an eight-bar dwell mecha-
nism. Recent work on the rigid body guidance of planar eight-bar
linkages includes Chen and Angeles (2008) [10] where they syn-
thesize an eight-bar linkage to reach 11 task positions, and Soh
and McCarthy [11, 12] where they presented a dimensional syn-
thesis procedure for planar eight-bars connected only by revolute
joints.

Our approach is different from these previous works in that
we start with a three degree-of-freedom parallel PRR-3R robot
that can reach five task poses, and then add two RR constraints
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to obtain an eight-bar linkage that could be driven by a prismatic
base joint. This approach reduces the complexity of the design
process and organizes the free parameters in a way that assists
the designer. It is known that there are sixteen topologies for one
degree-of-freedom eight bars linkages as shown in Figure 1, see
Tsai (2001) [4]. Our 8 topologies are inversions of four of these
sixteen basic chains.

Chain 1 Chain 2 Chain 3 Chain 4

Chain 5 Chain 6 Chain 7 Chain 8

Chain 9 Chain 10 Chain 11 Chain 12

Chain 13 Chain 14 Chain 15 Chain 16

FIGURE 1. The sixteen one degree-of-freedom topologies for planar
eight-bar chains.

Once an eight-bar linkage has been designed, we analyze it
to determine its configuration for given values of the input slide,
in order to simulate its movement. Dhingra et al. (2000) [13]
present the analysis of all 16 general eight-bar linkages. For our
work, we follow Wampler (2001) [14] and formulate complex
number loop equations and use the Dixon determinant to elimi-
nate joint variables, in order to analyze and simulate the move-
ment of our eight-bar linkage.

THE KINEMATICS OF THE PLANAR PRR-3R PARAL-
LEL ROBOT

The kinematics equations of the planar PRR-3R parallel
robot equate the 3×3 homogeneous transformation [D] between
the end-effector and the base frame to the sequence of local coor-
dinate transformations around the joint axes and along the links
of the chain,

[D] =[G1][Z(α)][X(θ1)][Z(θ2)][X(a23)][Z(θ3)][H1],and
[D] =[G2][Z(θ4)][X(a45)][Z(θ5)][X(a56)][Z(θ6)][H2]. (1)

The transformation [Z(θ)] and [X(α)] are the 3 x 3 homogenous
matrices that represent a rotation about the z-axis by θ ,

Z(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 ,
and a translation along the x-axis by α ,

X(α) =

1 0 α

0 1 0
0 0 1

 . (2)

As shown in Figure 2, the parameters θi define the move-
ment at each joint and al,k define the length of the links that
connects between link l and k. The angle α defines the slide
axes orientation with respect to the fixed frame. The transfor-
mation [Gi] defines the position of the base of the chain relative
to the fixed frame, and [Hi] locates its task frame relative to the
end-effector frame. The matrix [D] defines the coordinate trans-
formation from the world frame F to the task frame M.
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FIGURE 2. The kinematic diagram of the planar PRR-3R parallel
robot. The graph of this chain has a vertex for each link and an edge
for each joint. R denotes a revolute joint and P a prismatic joint.

DIMENSIONAL SYNTHESIS OF EIGHT-BAR LINKAGE
The dimensional synthesis of planar eight-bar linkages with

a sliding base joint can be accomplished by constraining two RR
chains to a parallel robot formed by a serial PRR and 3R chain.
The selection of a parallel robot allows the designer to choose the
two connections to ground and two connections on the moving
workpiece, and a PRR-3R parallel robot provides the structure
for prismatic actuation. Due to practical reasons, we choose not
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to connect any additional links to the prismatic joint and avoid a
third ground pivot.

Our dimensional synthesis process proceeds in three steps.
Given five task poses, we first identify a PRR-3R parallel robot
that reaches those poses. Inverse kinematics analysis of the par-
allel robot yields the configuration of the robot in each of the five
poses. This allows us to compute the five relative poses of any
pair of links in the chain.

The second step is to choose two links in the parallel robot
and compute an RR chain that constrains their relative movement
to that required by the five task poses. Denote the ground link
as B0, the three links of the PRR chain can be labelled as Bi,
i = 1,2,3 and the 3R chain as Bi, i = 4,5,6. Because we cannot
constrain two consecutive links within the PRRRRR loop and we
choose not to constrain any links to the prismatic joint or to the
ground, this leaves three cases: i) B2B4, ii) B2B5 and iii) B3B4.
The introduction of this RR chain adds a link to the system that
we will denote as B7.
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FIGURE 3. The linkage graphs show the synthesis sequence for the
four planar eight-bar linkages in which the two RR chains are attached
independently. The number in bracket denotes its topological chain. The
graph edges denotes a revolute joint unless otherwise stated.

The third step consists of adding a second RR chain. The

second RR constraint can be attached to the original parallel
robot or to the newly formed link. In the first case, we found
that four eight-bar structures could be designed this way. Figure
3 shows the various eight-bar structures that result from indepen-
dent RR constraints to the parallel robot. We label these struc-
tures by denoting Bij as the RR constraint connecting Bi and B j.
For example, a B24B25 would have RR constraints between B2
and B4 as well as B2 and B5.

We now consider the case where an RR constraint is con-
nected to the new link B7. Figure 4 shows that we have four
eight-bar structures that arise from such dependent attachment.
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FIGURE 4. The linkage graphs show the synthesis sequence for the
four planar eight-bar linkages in which the second RR chain connects to
the first RR chain. The number in bracket denotes its topological chain.
The graph edges denotes a revolute joint unless otherwise stated.

The Synthesis Of An RR Constraint Between Two Arbi-
trary Bodies

The synthesis of an RR chain to reach five task pose is well-
known, and we expand the formulation by McCarthy (2010) [12]
to synthesize an RR chain between two moving bodies.

Let [Bl, j] be five poses of the lth moving link, and [Bk, j] be
the five poses of the kth moving link measured in a world frame
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F , j = 1, . . . ,5. Let g be the coordinates of the R-joint attached to
the lth link measured in the link frame Bl . Similarly, let w be the
coordinates of the other R-joint measured in the link frame Bk.
The five poses of these points as the two moving bodies move
between the task configurations are given by

G j = [Bl, j]g and W j = [Bk, j]w. (3)

Now, introduce the relative displacements

[R1 j] = [Bl, j][Bl,1]
−1 and [S1 j] = [Bk, j][Bk,1]

−1, (4)

so these equations become

G j = [R1 j]G1 and W j = [S1 j]W1, (5)

where [R11] = [S11] = [I] are the identity transformations.
The point G j and W j define the ends of a rigid link of length

a, therefore we have the constraint equations as defined by the
dot product,

([S1 j]W1 − [R1 j]G1) · ([S1 j]W1 − [R1 j]G1) = a2. (6)

These five equations can be solved to determine the five design
parameters of the RR constraint, G1 = (u,v,1)T , W1 = (x,y,1)T

and a. We will refer to these equations as the synthesis equations
for the RR link. To solve the synthesis equations, it is convenient
to introduce the displacements

[D1 j] = [R1 j]
−1[S1 j] = [Bl,1][Bl, j]

−1[Bk, j][Bk,1]
−1, (7)

so these equations become

([D1 j]W1 −G1) · ([D1 j]W1 −G1) = a2. (8)

Subtract the first of these equations from the remaining to can-
cel a2 and the square terms in the variables u,v and x,y. The
resulting four bilinear equations can be solved algebraically (see
McCarthy (2010) [12]), or numerically using something equiv-
alent to Mathematica’s Nsolve function to obtain the desired
pivots.

EXAMPLE SYNTHESIS OF A TRANSFORMATIVE
WHEELCHAIR

The goal here is to design a multi-functional wheelchair that
could transform itself between a self-propelled wheelchair and a

walking guide. This not only provides outpatients the ability to
perform rehabilitation exercise on their own by transforming it-
self to a walking-aid apparatus but also as a means of transporta-
tion during their recovery period. It also provides the structure
for robotic systems to be fitted onto the wheel chair to moni-
tor their recovery status and to give them professional guidance.
The benefit of such transformative wheelchair is that it elimi-
nates the need for the user to carry an additional rehabilitative
device around. We choose to use a cantilever frame (see Cooper
(1995) [15]) and attached an eight-bar linkage as its arm and
armrest to achieve this. This is an improvement to the design
as presented by Soh etal. (2012) [16].

TABLE 1. Five task poses for the end-effector of the parallel robot
that transform between a wheelchair and a walking guide.

Task Pose (θ(◦),x(in),y(in))

1 (0,11,7.5)

2 (−10.1,11,8.38)

3 (−20.6,11,9.26)

4 (−32.0,11,10.15)

5 (−44.9,11,11.03)

The task poses that define such movement are listed in Table
1 and as shown at the bottom right image of Figure 5. These
poses define the discrete handle position of the walking guide.
Note that the poses of the arm rest as denoted by the rectangle,
are to cater to patients of varying heights. In the following, we
design a B24B24 linkage to achieve such task.

We select the link dimensions of the parallel robot to be as
shown in Table 2 (see Figure 2 for the notations). Thus, for a
given set of five task poses [M j], j = 1, . . . ,5, we solve the inverse
kinematics equations to determine the associated joint param-
eters vectors qi = (θ1 j,θ2 j,θ3 j,θ4 j,θ5 j,θ6 j), j = 1, . . . ,5. The
coordinates of the five R joints in each of the five configurations
are denoted by C2 j, C3 j, C4 j, C5 j, and C6 j, j = 1, . . . ,5.

Link [G1] α(◦) a23(in) [H1]

PRR (0◦,19.1,0) 180 11.04 (0◦,0,0)

Link [G2] a45(in) a56(in) [H1]

3R (180◦,0,0) 7.9 13.23 (0◦,−14,0)

TABLE 2. The chosen parameters of the parallel robot.
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G1 W1

1 (5.61,−1.50,1) (7.04,−3.53,1)

2 (1.92,0.96,1) (13.02,3.83,1)

3 Complex Solution

4 Complex Solution

TABLE 3. Solutions for both G1
1W1

1 and G1
2W1

2.

For the five configurations, we can identify the poses of each
of the six links of the parallel robot using the coordinate trans-
formations [B] = [A(θ),C], in which Ci is the coordinates of the
origin of the link frames, and A is a rotation matrix of angle θ

relative to the ground frame F . Using this convention and ignor-
ing the sliding first link, the poses of the second to sixth links are
given by

[B2 j] =[A(α +θ2 j),C2 j],

[B3 j] =[A(α +θ2 j +θ3 j),C3 j],

[B4 j] =[A(θ4 j),C4 j],

[B5 j] =[A(θ4 j +θ5 j),C5 j],

and [B6 j] =[A(θ4 j +θ5 j +θ6 j),C6 j], j = 1, . . . ,5. (9)

The 25 coordinate transformations, [Bi j], form the require-
ments used to synthesize two RR chains that constrain the move-
ment of the chain to pass through the given task poses. We
compute the RR chain G1

1W1
1 and G1

2W1
2 using Eq (8) with

[D1 j] = [B2,1][B2, j]
−1[B4, j][B4,1]

−1 to constraint between B2 and
B4. Since we are constraining between the same bodies twice,
the solutions are listed in Table 3.

A schematic of the resulting planar eight bar linkage at each
of the five poses is shown by the image sequence labelled 1-5 in
Figure 5.

ANALYSIS OF PLANAR EIGHT-BAR LINKAGES:
B24B24

To analyze the planar B24B24 eight-bar linkage, we use
complex number coordinates and the Dixon determinant as pre-
sented by Wampler (2001) [14]. This approach can be general-
ized for any planar eight-bar linkage.

The Complex Loop Equations
Consider the B24B24 linkage with links and joint param-

eters θi as shown in Figure 6. Introduced a coordinate frame
F such that its origin coincides with the configuration of C1 at

FIGURE 5. The image sequence for the B24B24 planar eight-bar
linkage reaching a set of five task poses. The bottom right image shows
a close up view of the poses.

its first pose and with its x-axis is directed towards C3. Us-
ing the notation in Figure 6, we formulate the complex loop
equations formed by loop OC1W1G1C3, OC1W2G2C3 and
OC1C2C5C4C3, that is,

f1 : Θ0eiα +b1Θ1e−iγ − l5Θ5 −b2Θ3eiη − l0 = 0,

f2 : Θ0eiα +b3Θ1e−iβ − l6Θ6 −b4Θ3eiε − l0 = 0,

f3 : Θ0eiα + l1Θ1 + l2Θ2 − l3Θ3 − l4Θ4 − l0 = 0. (10)
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FIGURE 6. This shows our conventions for the analysis of the
B24B24 linkage.

The complex conjugate of these equations yields

f ?1 : Θ0e−iα +b1Θ
−1
1 eiγ − l5Θ

−1
5 −b2Θ

−1
3 e−iη − l0 = 0,

f ?2 : Θ0e−iα +b3Θ
−1
1 eiβ − l6Θ

−1
6 −b4Θ

−1
3 e−iε − l0 = 0,

f ?3 : Θ0e−iα + l1Θ
−1
1 + l2Θ

−1
2 − l3Θ

−1
3 − l4Θ

−1
4 − l0 = 0.

(11)

We solve these six equations for Θ j, j = 1,2,3,4,5,6 using the
Dixon determinant.

The Dixon Determinant
We suppress Θ2, so we have six complex equations in the

five variables Θ1, Θ3, Θ4, Θ5 and Θ6. We formulate the Dixon
determinant by inserting each of the six functions f1, f ∗1 , f2, f ∗2 ,
f3, f ∗3 as the first row, and then sequentially replacing the five
variables by αi in the remaining rows, to obtain,
∆( f1, f ∗1 , f2, f ∗2 , f3, f ∗3 ) =

∣∣∣∣∣∣∣∣∣
f1(Θ1,Θ3,Θ4,Θ5,Θ6) . . . f ∗3 (Θ1,Θ3,Θ4,Θ5,Θ6)
f1(α1,Θ3,Θ4,Θ5,Θ6) . . . f ∗3 (α1,Θ3,Θ4,Θ5,Θ6)

...
...

f1(α1,α3,α4,α5,α6) . . . f ∗3 (α1,α3,α4,α5,α6)

∣∣∣∣∣∣∣∣∣ . (12)

This determinant is zero when Θ j, j = 1, . . . ,6 satisfy the loop
equations, because the elements of the first row become zero.

Now row reduce ∆ by subtracting the second row from the
first row, then the third from the second, fourth from the third,

and the fifth from the fourth, to obtain,

∣∣∣∣∣∣∣∣∣
c11(Θ1 −α1) . . . c∗31(Θ

−1
1 −α

−1
1 )

c13(Θ3 −α3) . . . c∗33(Θ
−1
3 −α

−1
3 )

...
...

f1(α1,α3,α4,α5,α6) . . . f ?3 (α1,α3,α4,α5,α6)

∣∣∣∣∣∣∣∣∣ . (13)

This determinant contains extraneous roots of the form Θ j =

α j and can be removed by factoring out (Θ−1
j −α

−1
j ). We sub-

stitute Θ j −α j =−Θ jα j(Θ
−1
j −α

−1
j ), to obtain,

δ =
∆( f1, f ∗1 , f2, f ∗2 , f3, f ∗3 )

∏i=1,3,4,5,6(Θ
−1
i −α

−1
i )

. (14)

This determinant expands to form the Dixon polynomial

δ = a[W ]t = 0. (15)

a =
{

a1 a2
}

is a row vector of monomials such that a1 is
any combinations αiα j of the variables (α1,α3,α4,α5,α6), and
a2 is its complement αkαlαm as follows:

aT
1 =



α1α3
α1α4
α1α5
α1α6
α3α4
α3α5
α3α6
α4α5
α4α6
α5α6



aT
2 =



α4α5α6
α3α5α6
α3α4α6
α3α4α5
α1α5α6
α1α4α6
α1α4α5
α1α3α6
α1α3α5
α1α3α4



. (16)

Similarly for t =
{

t1
t2

}
we have the following column vec-

tors of monomials:

t1 =



Θ1Θ3
Θ1Θ4
Θ1Θ5
Θ1Θ6
Θ3Θ4
Θ3Θ5
Θ3Θ6
Θ4Θ5
Θ4Θ6
Θ5Θ6



t2 =



Θ4Θ5Θ6
Θ3Θ5Θ6
Θ3Θ4Θ6
Θ3Θ4Θ5
Θ1Θ5Θ6
Θ1Θ4Θ6
Θ1Θ4Θ5
Θ1Θ3Θ6
Θ1Θ3Θ5
Θ1Θ3Θ4



. (17)
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The matrix [W] can be rewritten in a way such that matrices
D1 and D2 are diagonal, and the elements of A obey the relation
ai j = a∗ji, that is,

{
a1 a2

}[D1x+D2 AT

A D∗
1x−1 +D∗

2

]{
t1
t2

}
= 0. (18)

Solving the loop equations
A set of values Θ j that satisfy the loop equations (10) and

(11) will also yield δ = 0, which will be true for arbitrary val-
ues of the auxiliary variables α j. Thus solutions for these loop
equations must also satisfy the matrix equation,

[W ]t = 0. (19)

The matrix W is a square, therefore this equation has solu-
tions only if det[W ] = 0. Expanding this determinant we obtain
a polynomial in x = Θ2. The structure [W ] yields,

[W ]t =
[(

D1 0
A D∗

2

)
x−
(
−D2 −AT

0 −D∗
1

)]{
t1
t2

}
= [Mx−N]t = 0.

(20)

Notice that the values of x that result in det[W ] = 0 are
also the eigenvalues of the characteristic polynomial p(x) =
det(Mx−N) of the generalized eigenvalue problem

Nt = xMt. (21)

Each value of x = Θ2 has an associated eigenvector t which
yields the values of the remaining joint angles Θ j, j = 1,3,4,5,6.

It is useful to notice that each eigenvector t = (t1, . . . , t20)
T

is defined up to a constant multiple, say µ . Therefore it is conve-
nient to determine the values of Θ j, by computing the ratios,

Θ1 =
t20
t5

= µΘ1Θ3Θ4
µΘ3Θ4

, Θ3 =
t20
t2

= µΘ1Θ3Θ4
µΘ1Θ4

, Θ4 =
t20
t1

= µΘ1Θ3Θ4
µΘ1Θ3

,

Θ5 =
t19
t1

= µΘ1Θ3Θ5
µΘ1Θ3

, Θ6 =
t18
t1

= µΘ1Θ3Θ6
µΘ1Θ3

. (22)

Sorting the Assemblies
The closed form solution above would yield as many as 20

configurations for each input slide. Therefore, to analyze the
B24B24 eight-bar linkage for a sequence of input slide Θ0, we

need to sort each of these joints angles into their respective as-
semblies. This can be done using Newton’s method.

First, compute the derivative of the loop equations (10) and
(11) to obtain

∇ f1 : Θ̇0eiα +b1Θ̇1e−iγ − l5Θ̇5 −b2Θ̇3eiη = 0,

∇ f2 : Θ̇0eiα +b3Θ̇1e−iβ − l6Θ̇6 −b4Θ̇3eiε = 0,

∇ f3 : Θ̇0eiα + l1Θ̇1 + l2Θ̇2 − l3Θ̇3 − l4Θ̇4 = 0,

∇ f ?1 : Θ̇0e−iα +b1Θ̇1Θ
−2
1 eiγ − l5Θ̇5Θ

−2
5 −b2Θ̇3Θ

−2
3 e−iη = 0,

∇ f ?2 : Θ̇0e−iα +b3Θ̇1Θ
−2
1 eiβ − l6Θ̇6Θ

−2
6 −b4Θ̇3Θ

−2
3 e−iε = 0,

∇ f ?3 : Θ̇0e−iα + l1Θ̇1Θ
−2
1 + l2Θ̇2Θ

−2
2 − l3Θ̇3Θ

−2
3 − l4Θ̇4Θ

−2
4 = 0.
(23)

Now, factor out the derivative vector ~̇Θ = (Θ1,Θ2,Θ3,Θ4,
Θ5,Θ6) to obtain the Jacobian matrix,

[∇F (~Θ)]~̇Θ = 0. (24)

To sort the roots among the various assemblies of the eight-bar
linkage, we approximate the complex loop equations using the
Jacobian, ∇F (~Θ) and obtain

[∇F (~Θk)](~Ψ−~Θk) = 0. (25)

~Ψ approximates the value of ~Θk+1 associated with the input slide
Θ

k+1
0 and is near to the assembly defined by ~Θk. The task now

is to identify which root ~Θk+1 is closest to ~Ψ on the ith circuit to
match the assemblies.

Numerical Example
To analyze the B24B24 planar eight-bar linkage that results,

we first determine the range of input slide θ0 by computing the
inverse kinematics of the PRR-3R parallel robot at each of the
task pose M. This yields five input slide parameters, which we
interpolate between them to obtain 24 input slide parameters for
this analysis. Table 4 shows the solutions for each of the 24 input
slide θ0 that correspond to the assembly configuration associated
with the first pose after our sorting process.

CONCLUSION
This paper presents a dimensional synthesis procedure for

planar eight-bar linkages by constraining a parallel robot with a
prismatic base. This procedure yields 8 different types of eight-
bar structures. The resulting linkage provides designers the capa-
bility to use linear actuators to drive directly at its prismatic base
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θ0(in) θ1(
◦) θ2(

◦) θ3(
◦) θ4(

◦) θ5(
◦) θ6(

◦)

1 0.00 -42.80 0.00 180.00 -34.53 125.10 -165.50

2 0.18 -44.18 -2.38 -174.84 -34.87 115.00 -165.62

3 0.37 -45.53 -4.48 -170.79 -35.63 107.30 -165.55

4 0.55 -46.84 -6.45 -167.34 -36.62 100.80 -165.39

5 0.73 -48.13 -8.32 -164.28 -37.78 95.06 -165.17

6 0.91 -49.39 -10.14 -161.50 -39.06 89.91 -164.92

7 0.91 -49.39 -10.14 -161.50 -39.06 89.91 -164.92

8 1.15 -50.98 -12.39 -158.24 -40.83 83.89 -164.56

9 1.38 -52.53 -14.57 -155.23 -42.70 78.38 -164.17

10 1.62 -54.05 -16.66 -152.44 -44.63 73.26 -163.77

11 1.86 -55.55 -18.68 -149.81 -46.60 68.45 -163.36

12 2.09 -57.02 -20.61 -147.32 -48.58 63.90 -162.95

13 2.09 -57.02 -20.61 -147.32 -48.58 63.90 -162.95

14 2.42 -59.06 -23.21 -143.97 -51.40 57.80 -162.36

15 2.76 -61.06 -25.65 -140.81 -54.18 52.05 -161.77

16 3.09 -63.03 -27.92 -137.80 -56.92 46.57 -161.20

17 3.43 -64.95 -30.03 -134.90 -59.60 41.33 -160.63

18 3.76 -66.85 -32.01 -132.08 -62.22 36.33 -160.07

19 3.76 -66.85 -32.01 -132.08 -62.22 36.33 -160.07

20 4.54 -71.05 -36.40 -125.35 -68.43 26.63 -158.88

21 5.32 -75.56 -38.72 -120.52 -72.83 12.01 -157.59

22 6.10 -79.66 -41.41 -114.62 -77.93 1.56 -156.52

23 6.87 -83.71 -43.44 -108.83 -82.62 -9.34 -155.52

24 7.65 -87.68 -44.91 -102.91 -87.06 -20.62 -154.59

TABLE 4. Analysis solution for each input slide θ0 that correspond
to the assembly configuration associated with the first pose.

joint. The synthesis and analysis procedure are demonstrated by
an example design of a B24B24 linkage for use as a transfor-
mative linkage for a multipurpose wheelchair. The result shows
the benefit of such design process in using free parameters of the
backbone chain to define the location of the ground pivots as well
as the connections of the moving workpiece for which a 4R and
planar six-bar linkage cannot provide.
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