SUTD researchers develop simple method to 3D print milk products

18 Sep 2020 Engineering Product Development 3D Printing

SUTD - Cheng Pau Lee, Rahul Karyappa and Michinao Hashimoto

Additive free, multimaterial 3D printing is achieved for milk-based products without temperature control.
Figure: 3D-printed milk and multi-food models. A - D) 3D printed milk structures of couch, fortress, wheel, and cloverleaf, respectively. E) 3D printed cone containing liquid chocolate syrup as an internal filling. F) 3D printed cube with four compartments containing liquid blueberry syrup, liquid chocolate syrup, milk cream, maple syrup as internal fillings.
 
Researchers from the Singapore University of Technology and Design (SUTD) developed a method to perform direct ink writing (DIW) 3D printing of milk-based products at room temperature, while maintaining its temperature sensitive nutrients.

3D printing of food has been achieved by different printing methods, including the widely used selective laser sintering (SLS) and hot-melt extrusion methods. However, these methods are not always compatible with temperature-sensitive nutrients found in certain types of food. For instance, milk is rich in both calcium and protein, but as these nutrients are temperature sensitive, milk is unsuitable for 3D printing using the aforementioned printing methods which require high temperature. While the cold-extrusion is a viable alternative, it often requires rheology modifiers or additives to stabilize printed structures. Optimising these additives is a complex and judicious task.

To tackle these limitations, the research team from SUTD’s Soft Fluidics Lab changed the rheological properties of the printing ink and demonstrated DIW 3D printing of milk by cold-extrusion with a single milk product – powdered milk. The team found that the concentration of milk powder allowed for the simple formulation of 3D-printable milk inks using water to control the rheology. Extensive characterizations of the formulated milk ink were also conducted to analyse their rheological properties and ensure optimal printability.

“This novel yet simple method can be used in formulating various nutritious foods including those served to patients in hospitals for their special dietary needs,” said the lead author and PhD candidate from SUTD, Mr Lee Cheng Pau.

“Cold-extrusion does not compromise heat-sensitive nutrients and yet offers vast potential in 3D printing of aesthetically pleasing, nutritionally controlled foods customised for individual requirements,” added Assistant Professor Michinao Hashimoto, the principal investigator of the study. 

This research was published by RSC Advances, a leading journal that encourages high quality, well conducted studies which contribute to the advancement of chemistry and its applications. Rahul Karyappa, a research fellow at SUTD, also participated in this project.
 

Reference:
3D printing of milk-based product, RSC Advances, (DOI: 10.1039/D0RA05035K)

Acknowledgements:
C. P. L. acknowledged the financial support from the President's Graduate Fellowship awarded by Ministry of Education (MOE), Singapore. The authors thank International Design Centre (IDC) at Singapore University of Technology and Design (SUTD) for the project support (IDG11700103; Digital Fabrication of Edible Materials) and SUTD Growth Plan (SGP) in Healthcare Research (SGPHCRS1907; Thrust 3-3 3D Food Printing).